繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x..

发布人:繁体字网(www.fantiz5.com) 发布时间:2015-12-04 07:30:00

试题原文

已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求证:函数g(x)=
f(x)
x
在(0,+∞)上单调递增;
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N+).

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:函数的单调性与导数的关系



2、试题答案:该试题的参考答案和解析内容如下:
证明:(Ⅰ)∵g(x)=
f(x)
x
,∴g′(x)=
f′(x)?x-f(x)
x2

∵xf′(x)>f(x),∴g′(x)>0在(0,+∞)上恒成立,
从而有g(x)=
f(x)
x
在(0,+∞)上单调递增;
(Ⅱ)由(Ⅰ)知,x1>0,x2>0时,有
f(x1+x2)
x1+x2
f(x1)
x1
f(x1+x2)
x1+x2
f(x2)
x2

于是有:f(x1)<
x1
x1+x2
f(x1+x2),f(x2)<
x2
x1+x2
f(x1+x2),
两式相加得:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)由于
1
(n+1)2
ln(n+1)2=-
1
(n+1)2
ln
1
(n+1)2
,设f(x)=xlnx,则xf′(x)>f(x)在(0,+∞)上恒成立.
由(Ⅱ)可知:f(x1)+f(x2)<f(x1+x2),(x1>0,x2>0)恒成立
由数学归纳法可知:xi>0(i=1,2,3,…,n)时,有:f(x1)+f(x2)+f(x3)+…+f(xn)<f(x1+x2+x3+…xn)(n≥2)恒成立
xi>0(i=1,2,3,…,n)时,x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2)(*)恒成立
令xn=
1
(n+1)2
,记Sn=x1+x2+…xn=
1
22
+
1
32
+…+
1
(n+1)2

∴Sn
1
1?2
+
1
2?3
+…+
1
n(n+1)
=1-
1
n+1

又Sn
1
2?3
+…+
1
(n+1)(n+2)
=
1
2
-
1
n+2
,且ln(x+1)<x
∴(x1+x2+…+xn)ln(x1+x2+…+xn)<(x1+x2+…+xn)ln(1-
1
n+1
)<-
1
n+1
(x1+x2+…+xn)<-
1
n+1
1
2
-
1
n+2
)=-
n
2(n+1)(n+2)
  (**)
将(**)代入(*)中,可知-[
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2]<-
n
2(n+1)(n+2)

1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x..”的主要目的是检查您对于考点“高中函数的单调性与导数的关系”相关知识的理解。有关该知识点的概要说明可查看:“高中函数的单调性与导数的关系”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2015-12-04更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: