繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知函数g(x)=xlnx,f(x)=g(x)-ax.(1)求函数g(x)的单调区间;(2)..

发布人:繁体字网(www.fantiz5.com) 发布时间:2015-12-03 07:30:00

试题原文

已知函数g(x)=
x
lnx
,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a,求实数a的取值范围.

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:函数的单调性与导数的关系



2、试题答案:该试题的参考答案和解析内容如下:
(1)由
x>0
lnx≠0
得,x>0且x≠1,
则函数g(x)的定义域为(0,1)∪(1,+∞),
且g′(x)=
lnx-1
(lnx)2
,令g′(x)=0,即lnx-1=0,解得x=e,
当0<x<e且x≠1时,g′(x)<0;当x>e时,g′(x)>0,
∴函数g(x)的减区间是(0,1),(1,e),增区间是(e,+∞),
(2)由题意得函数f(x)=
x
lnx
-ax
在(1,+∞)上是减函数,
∴f′(x)=
lnx-1
(lnx)2
-a≤0在(1,+∞)上恒成立,
即当x∈(1,+∞)时,f(x)max≤0即可,
又∵f′(x)=
lnx-1
(lnx)2
-a=-(
1
lnx
)2+
1
lnx
-a
=-(
1
lnx
-
1
2
)
2
+
1
4
-a

∴当
1
lnx
=
1
2
时,即x=e2时,f(x)max=
1
4
-a

1
4
-a≤0
,得a≥
1
4
,故a的最小值为
1
4

(3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a成立”等价于
“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,
由(2)得,当x∈[e,e2]时,f(x)max=
1
4
-a
,则f(x)max+a=
1
4

故问题等价于:“当x∈[e,e2]时,有f(x)min
1
4
”,
a≥
1
4
时,由(2)得,f(x)在[e,e2]上为减函数,
f(x)min=f(e2)=
e2
2
-ae2
1
4
,故a≥
1
2
-
1
4e2

a<
1
4
时,由于f′(x)=-(
1
lnx
-
1
2
)
2
+
1
4
-a
在[e,e2]上为增函数,
故f′(x)的值域为[f′(e),f′(e2)],即[-a,
1
4
-a
].
(i)若-a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上为增函数,
于是,f(x)min=f(e)=e-ae≥e>
1
4
,不合题意.
(ii)若-a<0,即0<a<
1
4
,由f′(x)的单调性和值域知,
存在唯一x0∈(e,e2),使f′(x0)=0,且满足:
当x∈(e,x0)时,f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)<0,f(x)为增函数;
所以,f(x)min=f(x0)=
x0
lnx0
-ax0
1
4
,x∈(e,e2),
所以,a≥
1
lnx0
-
1
4x0
1
lne2
-
1
4e
1
2
-
1
4
=
1
4
,与0<a<
1
4
矛盾,不合题意.
综上,得a≥
1
2
-
1
4e2
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知函数g(x)=xlnx,f(x)=g(x)-ax.(1)求函数g(x)的单调区间;(2)..”的主要目的是检查您对于考点“高中函数的单调性与导数的关系”相关知识的理解。有关该知识点的概要说明可查看:“高中函数的单调性与导数的关系”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2015-12-03更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: