繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,a2(a-1)an,..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-01-30 07:30:00

试题原文

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn
a
2(a-1)
an
,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示)
(2)当a=
8
9
时,数列{bn}是否存在最小项,若有,请求出第几项最小;若无,请说明理由;
(3)若{bn}是一个单调递增数列,请求出a的取值范围.

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:数列求和的其他方法(倒序相加,错位相减,裂项相加等)



2、试题答案:该试题的参考答案和解析内容如下:
(1)由题意
a
a-1
an=Sn+n

a
a-1
an+1=Sn+1+n+1

②-①得
1
a-1
an+1=
a
a-1
an+1

即an+1+1=a(an+1),{an+1}是以a为公比的等比数列.∴an+1=(a1+1)an-1
又由
a
a-1
a1=a1+1
?a1=a-1∴an=an-1

(2)a=
8
9
时,bn=n(
8
9
)nlg
8
9
bn+1-bn=
8-n
9
?(
8
9
)n?lg
8
9

当n<8时,bn+1-bn<0即bn+1<bn,∴b1>b2>>b8
当n=8时,bn+1-bn=0即bn+1=b&n,b8=b9
当n>8时,bn+1-bn>0即bn+1>bn∴b9<b10
存在最小项且第8项和第9项最小

(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0
当a>1时,得(n+1)a-n>0,即a>
n
n+1
,显然恒成立,∴a>1
当0<a<1时,lga<0,∴(n+1)a-n<0即a<
n
n+1
,∴a<
1
2
,∴0<a<
1
2

综上,a的取值范围为(0,
1
2
)∪(1,+∞)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,a2(a-1)an,..”的主要目的是检查您对于考点“高中数列求和的其他方法(倒序相加,错位相减,裂项相加等)”相关知识的理解。有关该知识点的概要说明可查看:“高中数列求和的其他方法(倒序相加,错位相减,裂项相加等)”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-30更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: