繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1),(1)求f(log2x)的最..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-01-15 07:30:00

试题原文

f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1),
(1)求f(log2x)的最小值;
(2)当x取何值时,f(log2x)>f(1)且log2[f(x)]=<f(1).

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:对数函数的解析式及定义(定义域、值域)



2、试题答案:该试题的参考答案和解析内容如下:
(I)∵log2f(a)=2
∴f(a)=4,即a2-a+b=4①
又∵f(log2a)=b,
∴(log2a)2-(log2a)=+b=2②
解得:a=2,b=2
∴f(x)=x2-x+2,
因为log2x∈R,
所以当x=
2
时,f(log2x)取最小值为
7
4
(4分)
(II)若f(log2x)>f(1)且log2[f(x)]=<f(1).
则f(log2x)2-log2x>0且x2-x<2
解得x∈(0,1)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1),(1)求f(log2x)的最..”的主要目的是检查您对于考点“高中对数函数的解析式及定义(定义域、值域)”相关知识的理解。有关该知识点的概要说明可查看:“高中对数函数的解析式及定义(定义域、值域)”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-15更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: