繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0为常数..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-01-16 07:30:00

试题原文

设函数f(x)=-
1
3
x3+x2+(m2-1)x
(x∈R),其中m>0为常数
(1)当m=1时,曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:导数的运算



2、试题答案:该试题的参考答案和解析内容如下:
(1)当m=1时,f(x)=-
1
3
x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,1-m)1-m(1-m,1+m)1+m(1+m,+∞)
f′(x)-0+0-
f(x)递增极小值递增极大值递减
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
函数的极小值为:f(1-m)=-
4
3
m3+m2-
1
3

函数的极大值为:f(1+m)=
2
3
m3+m2-
1
3
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0为常数..”的主要目的是检查您对于考点“高中导数的运算”相关知识的理解。有关该知识点的概要说明可查看:“高中导数的运算”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-16更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: